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The three-dimensional contact problem for an elastic body of arbitrary geometry with a single plane face, into which a punch in 
the shape of an elliptic paraboloid is indented, is considered. The curvilinear boundary of the body is partially clamped, and the 
remaining boundary (outside the contact region) is stress-free. It is assumed that the dimensions of the contact area are small 
compared with the characteristic dimension of the body. Using the method of matched asymptotic expansions a model problem 
of unilateral contact without friction is derived for the boundary layer, which is solved using the apparatus of Hertz's theory. 
Asymptotic models of the contact interaction of different degrees of accuracy are constructed, including corrections to the geometry 
and damping conditions of the elastic body. The sensitivity of the parameters of the elliptic region of the contact to these factors 
is investigated. © 1999 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

A punch in the shape of an elliptic paraboloid, acted upon by a system of forces with resultant Q and 
moments Mt and M2 about horizontal axes, is gradually impressed without friction into the plane section 
Fc of the boundary of an elastic body fl to a depth a0; the body is clamped on the part Fu, and is stress- 
free on Fo and Fc outside the contact region (see Fig. 1). 

Suppose 1 is the radius of the largest hemisphere contained in f) with centre at the point O. We will 
denote by ~ a small positive parameter and put 

R I = eR~, R 2 = r.R~; 8 0 = t~8 o (1.1) 

Here R1 and R 2 a r e  the radii of curvature of the principal normal sections of the surface of the punch 
at its vertex, where the quantities 6~ and R~ and R~ are comparable with l. 

The vector u = (u l ,  u2, u3) of the displacements of points of the elastic body f2 satisfies the problem 

Ix VxVx.u(e;x)=0, xeEl  (1.2) L(Vx)u(¢;x ) n _ B V  x . V~u(e;x) - 1-2v 

osl(u;x) = Os2(u;x) = 0, x e F c (1.3) 

%(~,x)~ ¢ao ~2 ~ o33(,,;,,)~ o 

I * X2 2 -I 
+ + = 0,  

2~t z~2 J 
x~ro 

(1.4) 

¢,( ' )(u;x)=0,  x ~ F o ;  u(e;x)=0,  xGF~ (1.5) 

Here Ix is the shear modulus, v is Poisson's ratio, o3/(u) are the components of the stress tensor and 
~r (n) is the stress vector on an area with normal n. 

The contact area is unknown in advance and is determined by the condition for the contact pressures 
to be positive 

tPrikL Mat. Mekh. Vol. 63, No. 4, pp. 671--679, 1999. 

641 



642 I.I. Argatov 

zz 

Fig. 1. 

p(xl, x2) = --o33(u; xi, x2, 0) 

Clearly R1, R2 and 80 define the dimensions of the contact area. In case (1.1) the latter turn out to be 
small compared with the characteristic dimension I of the body f~. 

One of the purposes of this paper is to establish the relation between the force Q and the displacement 
80, and also to determine the moments M1 and ME. By Hertz's theory, by virtue of equalities (1.1), we 
can write 

Q = ~20" (1.6) 

Problem (1.2)-(1.5) and related problems, including the unilateral contact conditions (1.4), have been 
investigated using the theory of variational inequalities ([1-3], etc.). Asymptotic methods of 
investigating variational inequalities have been developed ([4, 5], etc.). Analytic solutions of the contact 
problem have been constructed for the case of a layer [6] and a wedge [7] by the "large L" method [8]. 
In this paper we use the method of matched asymptotic expansions [9, 10]. 

2. THE OUTER ASYMPTOTIC EXPANSION 

We will denote Green's vector function with a pole at the origin of coordinates by G. This satisfies 
the relations 

L(Vx)G(x) = 0, x e f l  (2.1) 

¢r3j(G; x) = 0, j = 1, 2, 3; x G FcXO (2.2) 

G(x) = T(x) + O(1), I x I=- (x~ + x~ + xff) )~ ~ 0 (2.3) 

(rtn)(G;x)=0, xeFo;  G(x)=0, x E F  u (2.4) 

Here T is the solution of the Boussinesq problem (see, for example, [11]) on the action on the boundary 
of an elastic half-space x3 > 0 of a single point force, directed along the Ox3 axis 

4r~tT/(x) = xix s I x I "a -(1 - 2v)x; I x I -n (I x I +Xs) -], 

4~tTs(x ) = xs 2 1 x I -a +2(1 - v) I x I -I 

i=1,2 
(2.5) 

Suppose (to simplify the formulae) that the body f2 is wholly contained in the half-spacex3 > 0. Then 
the regular component of Green's vector function 

G(x) = T(x) + g(x) (2.6) 

annuls the discrepancy in boundary conditions (2.4), which arise when the sum (2.6) is substituted there, 
i.e. 

~<n)(g;x)  = --¢rt")(T;x), .x ~ Fe; g(x) = -T(x), x G Fj (2.7) 
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Moreover, as [ x [ ~ 0 the following expansions hold 

n 9 (2.8) 
S(x) = II(O)+ E g,.,V~(x)+ T'. gZ,V,2(z)+ 0(I x 13) 

k=l k=l 

= a+ +q,x? + 2c,:,x  + c..x  + o ( &  
l - v  

(2.9) 

Since the vector function g in the neighbourhood of the origin of coordinates satisfies the homogeneous 
Lain6 system (2.1) and boundary conditions (2.2), its Maclaurin series, generally speaking, will 
contain 3(re+l)  homogeneous vector polynomials ~k of degree m ([12, Chapter 13, Section 1] and 
[13, Section 5.3]) 

v~' Ox~, ix2, t~s) = t"v~ (x) (2.10) 

The constants on the right-hand side of (2.9) are determined by the shape and dimensions of the 
body f2 and the nature of its damping, and depend on the value of Poisson's ratio. IfL has the dimension 
of length, the dimensions of the quantities A, Bi and Cq (i, j = 1, 2) are L -1, L -2 and L -3, respectively. 

When the parameter e is reduced the area of distribution of the contact pressures contracts to the 
punch vertex. Hence, at a distance from it the stress--strain state of the body f~ is approximately described 
by the solution of the problem of the action on its boundary at the point O of a point force of value Q 
(see (1.6)) 

v(e; x) = ~2Q*G(x) (2.11) 

3. THE INNER A S Y M P T O T I C  EXPANSION 

In the region of local perturbations we will introduce the "extended" coordinates 

---- (~ i '  ~2, ~3); ~i---- E-Ixi (3.1) 

Here parts of the body boundary, on which boundary conditions (1.5) are specified, are further than 
a-~l from the origin of coordinates (bearing the new scale in mind). As a result of this the problem for 
the inner asymptotic expansion is formulated in the half-space ~3 ~> 0. Relations (1.2)-(1.4) give 

L(V~)w(E;Ij) =0, ~s <0 (3.2) 

osi(w;~) = o~(w;~-- 0, ~a = 0 (3.3) 

[ws(e; ~)- E(S~ -,a" (~,~2))Ioss(w; ~ = 0, ~,s = 0 

= + ( 2 e ; ) - '  

(3.4) 

Formulae (3.2)--(3.4) are closed by the condition of the behaviour of w(e; ~) as [ g I ~ oo, which we obtain 
by matching with (2.11). 

In the matching region {x: ~/(a)//2 <~ I xl <~ 4(01I, for small values of a, we obtain 

[ , ] 
k=l 

(3.5) 

(we have grouped the binomial expansion (2.8) together with relations (2.11) and (2.6), we have made 
the replacement (3.1) and we have taken into account relations (2.5) and (2.10)). Hence, from expression 
(3.5) we will have 

w(~;lj) = CQ*T(~+ E2V*(¢;~+ O(I ~I~), I ljl-~ ** (3.6) 
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. , 6 

v (e;O=Q [g(o)+eZ &,kV~(0] (3.7) 
kffii  

Retaining only the first term on the right in (3.6) we arrive at the equations of Hertz's theory. Taking 
into account the terms from the right-hand side of (3.7), we obtain models which refine it to various 
degrees of accuracy. 

We will represent the solution of problem (3.2)-(3.4), (3.6) in the form 

w(e; 0 = e 2v* (e; 0 + eW(e; 0 (3.8) 

The vector V* satisfies relations (3.2) and (3.3), where ff33(V*; ~1, ~2, 0) = 0. The third component of 
vector function (3.7) when ~3 --" 0 remains the trace (see (2.10)) 

l - v  
(3.9) 

Substituting (3.8) into (3.2)-(3.4) and (3.6), we arrive at the problem 

L(VOW(e;O=O, gs <0 

o31(W; 6) = o32(W; 6) = O, g3 --" o 

ws(e;O~ So-~'(g~,g2)-ev;(e;O, oa(w;o~<o 

[ws(e;O-So + ~ * ( ~ , , ~ ) + e v ; ( e ; ~ ( w ; o  =o, ~s =o 
W(e; ~) = Q*T(/j) + O(l[jl-2), t[jt ~ -- 

(3.10) 

We obtain its solution by using well-known results (see, for example [14, 15]). 
In case (3.9) the contact area is bounded by an ellipsoid. 

4. THE FIRST C O R R E C T I O N  

Suppose a = ~ *  and e are the major semiaxis and eccentricity of the elliptical contact area. 
We will assume that the larger of the radii of curvature is denoted by RI. Then, confining ourselves 
solely to the first terms in (3.7) and (3.9), we obtain the equations ([15, Chapter 5, Section 6.5]) 

o,A* 
• V •Q • (1 

So -c0"A = °-~-,-~ Kfe), Q" = 2m, t za 
(4.1) 

~rl.= ,, D(e). ~-~= a. s i_e2 

D(e) = e-2[K(e) - E(e)], B(e) = e-2[E(e) - (1 - e~)K(e)] 

(4.2) 

where K and E are the complete elliptic integrals of the first and second kind. 
Note that the quantity Q* has dimension L ~. 
The eccentricity of the contact area can be found from the equation 

R~ = (1 - e2)D(e) (4.3) 

R; n(e) 

after which we express a* in terms of Q* from (4.2) and substitute into (4.1). We obtain 

SO = cs(e + ~ ' d  (4.4) 
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__ R* ~ cs(e) R, +R 2 ' "~, 4E(e) ) 
(4.5) 

The equation relating the value of the punch pressing force and the punch displacement can be 
rewritten, reverting to the use of the real scale, in the form 

~ ) / ~  ( l -v )Q (4.6) 
8 o=¢s(e ~ +QA, Q = 2zl. t 

where R is the harmonic mean of the radii of curvature R 1 and R2. 
We will now express Q in terms of 80. With the same accuracy with which we wrote Eq. (4.4), we put 

Q* = ~  +l~*; ~ =ffR-;80~e~(e) (4.7) 

(the quantity Q~ is found from (4.4) with e = 0). 
We substitute (4.7) into (4.4), replace the increment of the first term by its differential and, neglecting 

quantities of the order of e 2, we obtain 

3R*A 8, 2 (4.8) ~ ° = - ~  o 

Thus, (4.6) is supplemented by the following relation 

) ~ 8 ~  3RAS02 (4.9) 

For the characteristic dimension of the contact region (in the "extended" scale) by (4.7) we have the 
representation 

. "  =a; a; = 

a:=-R*5*oA C~(e!, ea(e)=(. E(e) .)~ (4.10) 
~ t e )  1~ K(e)(l -e2) )  

Finally, the contact pressure can be calculated from the formula ([15, Chapter 5, Section 6.5]) 

3Q [1 x• x~ (4.11) P(Xl,X 2) = 2~a2 l ~ _ e  2 ~ - ~ ' -  a2 ( l - e  2) 

5. THE SECOND CORRECTION 

Retaining both terms in (3.7) we find that the following equation must be satisfied inside the contact 
region (see (3.10)) 

W3(e;~l,~2,0)=80 2~R! 2~R~ -e~) °A-e2~ *(/~+ B2~2)= 

(the complete squares are distinguished). Consequently, in the case considered we again arrive at 
Eqs (4.1)--(4.6) with the sole difference that the centre of the contact spot is shifted to a point with 

0 coordinates ~i (i = 1, 2), or, which is the same thing 
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* ( I -V)QRiB i, i=1,2 (5.1) 
Xi = 41cp. 

The law of the contact-pressure distribution has the form (4.11), where on the right we must replace 
Xl and x2 by Xl-X* and x2-x*, respectively. 

However, formulae (4.7) and (4.8) can be refined to give 

21R*~A 2 80~j (5.2) 

For the moments of the system of loads which keep the punch in a vertical position, we obtain the 
expressions 

M~ =x~Q, M,=-x[Q (5.3) 

From the representation of the solution of problem (3.10) in the form of the generalized potential 
of a simple layer, we obtain the expansion 

2 2 
W(~;g)=Q*T(~+ Z M~'s°)(g)+ Z M;.,S(~")(g)+O0 ~P), 

i=1 n=O 

aT(~) S(2)(~ ) ~rr(g), a2T(g) 
al~, a~2 

(5.4) 

The integral characteristics of the pressure possess the following values 

M; =Q'g~, M;=-Q'g[ (5.5) 

";.° L, ";" :4 r_ ,  L5 (5.6) 

6. R E F I N E M E N T  OF THE C O N S T R U C T I O N  
OF THE A S Y M P T O T I C  FORM 

In (5.4) we make a replacement of the coordinates that is the inverse of (3.1) (the factor e on the 
left is set on account of (3.8)) 

, 2 cW(~;c-lx)~~2Q T(x)+~aY. M~S(i)(x)+e4 T. M~..S(Z')(x)+... (6.1) 
iffil n=O 

By the method of matched expansions the terms written on the right in (6.1) mainly define the nature 
of the singularity in the point O of the outer asymptotic expansion. 

When refining (2.11) we bear in mind that coefficients (5.5) are of the order of e 2 (see (5.1)), and 
we write the outer asymptotic expansion of the initial problem (1.2)--(1.5) in the form 

2 

v(e;x) = QG(x)+ Z M2,nG(2'")(x) (6.2) 
n=0 

where we have introduced the polymoments (as the forces Q are also not defined at this stage) 

4 * M2, . = ¢ M2.,, n = 0,1, 2 (6.3) 

The vector function G (2' ") satisfies relations (2.1), (2.2), (2.4) and (2.5) and also the relation 

G(Z~)(x) = S(2'")(x) + O(I), I x I~ 0 

The result of matching the outer asymptotic expansion (6.2) and the inner asymptotic expansion, 
instead of relation (3.6), will be as follows: 
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w(E;Q=EQ*T(Q+E~ M~,nS’2~“‘(~+~2V*(&;~+o(l~l-4)~ I&I+- 
n=l 

Here, by (2.8) and (2.9) 

V’(E;e)= e’ g(O)+E: @;(g)+E* E 8 v*(e) +E2 2 M;,,g?O) 
k-l k-1 ” ’ 1 n=O 
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(6.4) 

~V;(E;~,,~~,O)=Q*A+E* i &,A(*'")+ 
l-v n=O 

+ Q’W4~~ + B252)+E2(c~,5:+2c,25,52+c225~)1 (6.5) 

By separating the polynomial part, we can represent the solution of the problem for the boundary 
layer (3.2X3.4) and (6.4) in the form (3.8), here the vector W satisfies problem (3.10), in which we 
must make the substitution (6.5) and replace the last relation as follows: 

W(E;@ = Q'T(&)+ i bf;,,s'2n'(@+o(I &-4), I&+= 
n=O 

7. THE THIRD CORRECTION 

In the general situation the coefficient Ciz in (6.5) is non-zero. The elliptic contact region then turns 
out to be turned with respect to the axes of coordinates by a certain angle cp. If Rr = RI, then cp is defined 
by the quadratic form 

i Gj5iSjtc*l =G?) 
i.j=l 

If R'f > Rz, then, for small E, retaining only the leading term we have 

cp’ -E3dii R* Re 
2R;R; c 

12 
I- 2 

(7.1) 

where Gi is given by the second formula of (4.7). 
To determine the characteristics of the contact region and the relation between the force and 

the displacement (retaining only terms up to the order of &3 inclusive) we have the equations 

2 
-* 

- 9 
6; - E~+A - E3 nTo M,*,A (2.n) = SK(e) 

1 
-. 

7 +E32&& =ss 

R2 

The quantities $:n = (1 - v)(27tu)-’ J$s,, by (5.6), take the values 

(7.2) 

(7.3) 

(7.4) 

Here g at and e. are the solution of system (7.2), (7.3) when E = 0. 
It is assumed that the left-hand side of the first equation of (7.3) is less than the left-hand side of the 

second, so that the major axis of the ellipse, which bounds the contact region, is oriented along the 
abscissa axis. When Rf = Rz, the coefficients Cl1 and C22 in (7.3) must be replaced by the smaller and 
larger eigenvalues of the matrix 11 C, 11, respectively. 

Without loss of accuracy we can derive from (7.3) 

(7.5) 
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Of course, the eccentricity of  the contact area, generally speaking, also depends on the force acting on 
the punch. 

We will denote the root of Eq. (4.3) by e0. Then the result of the approximate solution of Eq. (7.5) 
has the form 

e2 = 4 - ~320-~(C~,R~ - C22R2)c+(eo) (7.6) 

2B(e  o)2 ' C(e)  = e -2[D(e)  - B(e)]  
e, (e  o) = E(eo)C(eo) + lgeo)D(eo) ' 

(7.7) 

In deriving (7.6) and (7.7) we used formulae for the complete elliptic integrals and their derivatives 
given in [16, Chapter 9, Section C, Subsection 2.3]. 

The equation relating the force and the displacement can be obtained by substituting the value of 
a* m terms of Q and e, found from (7.3), into (7.2). The asymptotic form of its solutaon (the dependence 
of Q* on ~5~, up to terms of the order of s 4) is constructed by using (7.6). 

8. R E M A R K S  

At the next stage of refining the construction of the asymptotic form, generally speaking, the conditions which ensure 
the ellipticity of the contact area will not be satisfied in the model problem for the boundary layer [17, Section 3]. 

Formulae (4.10), (5.1), (7.1) and (7.6) show the sensitivity of the parameters of the contact spot to the dimensions, 
shape and clamping conditions of the elastic body. 

We recall that A = 47t~t(1-v)-tg3(0), where g3 is the component of the regular part of Green's vector function 
normal to the boundary. Using Betti's formula we obtain the representation 

g3(0) = - i ~(")(G;x).g(x)ds + j ¢(")(g;x).G(x)ds 
r~ ro 

When Fo is not present and Fu divides the half-space into two parts ~ and D~, it is easy to prove that the coefficient 
A is negative. Thus, by (2.7) 

g3(0) = - .I' cr(n)(g;x) • g(x)ds + J ¢rO)(T;x) • T(x)ds 
r~ r~ 

Suppose E(D; u) is the potential energy of elastic deformation, corresponding to the displacement field u, stored 
by the body F. Then, using a well-known method [18] and Clapeyron's theorem, we obtain 

g~(0) = -2E(fl;g) - 2E(f~oo ;T) 
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